更快速网站(影印版) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
更快速网站(影印版)电子书下载地址
内容简介:
《更快速网站(影印版)》内容简介:对于任何成功的网站来说,性能是至关重要的。但伴随着不断增长的丰富内容和Ajax的过度使用,如今的Web应用已经将浏览器推至性能极限。在《更快速网站(影印版)》中,Google的Web性能专家和前任雅虎首席网站性能官Steve Souders提供了宝贵的技术,来帮助你优化网站性能。
作者的上一《更快速网站(影印版)》是非常畅销的《High Performance Web Sites》,它透露了80%的网页加载时间是花在客户端,使网络开发世界为之震惊。在《更快速网站(影印版)》中,Souders和8位专家撰稿人提供了*实践和实用建议,用于在三个范畴提高网站的性能:
JavaScript——获取用于了解Ajax性能的建议,编写有效的JavaScript,创建响应程序,加载脚本时不阻止其他组件等等。
Network——学习穿过多个域共享资源,减小图片尺寸而不损失质量,以及使用分块编码(chunked encoding)来更快呈现页面。
Browser——探索内嵌框架(*)的替代方案、如何简化CSS选择器和其他技术。
对于当今的富媒体网站和Web 2.0应用来说,速度是至关重要的。有了这《更快速网站(影印版)》,你将学习到如何减少你的网站的加载时间,让它们响应得更快。
书籍目录:
Credits
Preface
1. Understanding Ajax Performance
Trade-offs
Principles of Optimization
Ajax
Browser
Wow!
JavaScript
Summary
2. Creating Responsive Web Applications
What Is Fast Enough?
Measuring Latency
When Latency Goes Bad
Threading
Ensuring Responsiveness
Web Workers
Gears
Timers
Effects of Memory Use on Response Time
Virtual Memory
Troubleshooting Memory Issues
Summary
3. Splitting the Initial Payload
Kitchen Sink
Savings from Splitting
Finding the Split
Undefined Symbols and Race Conditions
Case Study: Google Calendar
4. Loading Scripts Without Blocking
Scripts Block
Making Scripts Play Nice
XHR Eval
XHR Injection
Script in Iframe
Script DOM Element
Script Defer
document.write Script Tag
Browser Busy Indicators
Ensuring (or Avoiding) Ordered Execution
Summarizing the Results
And the Winner Is
5. Coupling Asynchronous Scripts
Code Example: menu.js
Race Conditions
Preserving Order Asynchronously
Technique 1: Hardcoded Callback
Technique 2: Window Onload
Technique 3: Timer
Technique 4: Script Onload
Technique 5: Degrading Script Tags
Multiple External Scripts
Managed XHR
DOM Element and Doc Write
General Solution
Single Script
Multiple Scripts
Asynchronicity in the Real World
Google Analytics and Dojo
YUI Loader Utility
6. Positioning Inline Scripts
Inline Scripts Block
Move Inline Scripts to the Bottom
Initiate Execution Asynchronously
Use Script Defer
Preserving CSS and JavaScript Order
Danger: Stylesheet Followed by Inline Script
Inline Scripts Aren’t Blocked by Most Downloads
Inline Scripts Are Blocked by Stylesheets
This Does Happen
7. Writing Efficient JavaScript
Managing Scope
Use Local Variables
Scope Chain Augmentation
Efficient Data Access
Flow Control
Fast Conditionals
Fast Loops
String Optimization
String Concatenation
Trimming Strings
Avoid Long-Running Scripts
Yielding Using Timers
Timer Patterns for Yielding
Summary
8. Scaling with Comet
How Comet Works
Transport Techniques
Polling
Long Polling
Forever Frame
XHR Streaming
Future Transports
Cross-Domain
Effects of Implementation on Applications
Managing Connections
Measuring Performance
Protocols
Summary
9. Going Beyond Gzipping
Why Does This Matter?
What Causes This?
Quick Review
The Culprit
Examples of Popular Turtle Tappers
How to Help These Users?
Design to Minimize Uncompressed Size
Educate Users
Direct Detection of Gzip Support
10. Optimizing Images
Two Steps to Simplify Image Optimization
Image Formats
Background
Characteristics of the Different Formats
More About PNG
Automated Lossless Image Optimization
Crushing PNGs
Stripping JPEG Metadata
Converting GIF to PNG
Optimizing GIF Animations
Smush.it
Progressive JPEGs for Large Images
Alpha Transparency: Avoid AlphaImageLoader
Effects of Alpha Transparency
AlphaImageLoader
Problems with AlphaImageLoader
Progressively Enhanced PNG8 Alpha Transparency
Optimizing Sprites
?ber-Sprite Versus Modular Sprite
Highly Optimized CSS Sprites
Other Image Optimizations
Avoid Scaling Images
Crush Generated Images
Favicons
Apple Touch Icon
Summary
11. Sharding Dominant Domains
Critical Path
Who’s Sharding?
Downgrading to HTTP/1.0
Rolling Out Sharding
IP Address or Hostname
How Many Domains
How to Split Resources
Newer Browsers
12. Flushing the Document Early
Flush the Head
Output Buffering
Chunked Encoding
Flushing and Gzip
Other Intermediaries
Domain Blocking During Flushing
Browsers: The Last Hurdle
Flushing Beyond PHP
The Flush Checklist
13. Using Iframes Sparingly
The Most Expensive DOM Element
Iframes Block Onload
Parallel Downloads with Iframes
Script Before Iframe
Stylesheet Before Iframe
Stylesheet After Iframe
Connections per Hostname
Connection Sharing in Iframes
Connection Sharing Across Tabs and Windows
Summarizing the Cost of Iframes
14. Simplifying CSS Selectors
Types of Selectors
ID Selectors
Class Selectors
Type Selectors
Adjacent Sibling Selectors
Child Selectors
Descendant Selectors
Universal Selectors
Attribute Selectors
Pseudo-Classes and Pseudo-Elements
The Key to Efficient CSS Selectors
Rightmost First
Writing Efficient CSS Selectors
CSS Selector Performance
Complex Selectors Impact Performance (Sometimes)
CSS Selectors to Avoid
Reflow Time
Measuring CSS Selectors in the Real World
Appendix: Performance Tools
Index
作者介绍:
Steve Souders,在Google从事网络性能和开放源码计划方面的工作。他是YSlow(Firebug性能分析扩展)的创造者,并且担任Velocity(0’Reilly的网络性能和业务运营会议)的联合主席。Steve经常在会议上或者高级别公司中发言,包括微软、亚马逊、MySpace、Linkedln、Facebook。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
Refactoring the code can reduce its apparent complexity, making optimization andother transformations more likely to yield benefits. For example, adopting the YSlowrules can have a huge impact on the delivery time of web pages (see http://developer. yahoo.com/yslow/).
Even so, it is difficult for web applications to get under the Inefficiency line because ofthe size and complexity of web pages. Web pages are big, heavy, multipart things. Pagereplacement comes with a significant cost. For applications where the differencebetween successive pages is relatively small, use of Ajax techniques can produce a significant improvement.
Instead of requesting a replacement page as a result of a user action, a packet of datais sent to the server (usually encoded asJSON text) and the server responds with anotherpacket (also typically JSON-encoded) containing data. A JavaScript program uses thatdata to update the browser's display. The amount of data transferred is significantly.reduced, and the time between the user action and the visible feedback isalso significantly reduced. The amount of work that the server must do is reduced.The amount of work that the browser must do is reduced. The amount of work thatthe Ajax programmer must do, unfortunately, is likely to increase. That is one of thetrade-offs.
The architecture of an Ajax application is significantly different from most other sortsof applications because it is divided between two systems. Getting the division of laborright is essential if the Ajax approach is to have a positive impact on performance. Thepackets should be as small as possible. The application should be constructed as aconversation between the browser and the server, in which the two halves communicatein a concise, expressive, shared language. Just-in-time data delivery allows the browserside of the application to keep n small, which tends to keep the loops fast.
A common mistake in Ajax applications is to send all of the application's data to thebrowser. This reintroduces the latency problems that Ajax is supposed to avoid. It alsoenlarges the volume of data that must be handled in the browser, increasing n and againcompromising performance.
在线阅读/听书/购买/PDF下载地址:
原文赏析:
* The architecture of HDFS is described in “The Hadoop Distributed File System” by Konstantin Shvachko,
Hairong Kuang, Sanjay Radia, and Robert Chansler (Proceedings of MSST2010, May 2010, http://
storageconference.org/2010/Papers/MSST/Shvachko.pdf).
† “Scaling Hadoop to 4000 nodes at Yahoo!,” http://developer.yahoo.net/blogs/hadoop/2008/09/scaling_hadoop
_to_4000_nodes_a.html.
在许多情况下,可以视Mapreduce为关系型数据库管理系统的补充。MapReduce比较适合以批处理的方式处理需要分析整个数据集的问题,尤其是即席分析。RDBMS适用于点查询和更新,数据集被索引后,数据库系统能够提供低延迟的数据检索和快速的少量数据更新。MapReduce适合数据一次写入、多次读取的应用,而关系型数据库更适合持续更新数据集.
MapReduce is a programming model for data processing. MapReduce works by breaking the processing into two phases: the map phase and the reduce phase. Each phase has key-value pairs as input and output, the types of which may be chosen by the programmer. The programmer also specifies two functions: the map function and the reduce function.
Hadoop divides the input to a MapReduce job into fixed-size pieces called input splits, or just splits. Hadoop creates one map task for each split, which runs the userdefined map function for each record in the split. Hadoop does its best to run the map task on a node where the input data resides in HDFS. This is called the data locality optimization.
When there are multiple reducers, the map tasks partition their output, each creating one partition for each reduce task. There can be many keys (and their associated values) in each partition, but the records for every key are all in a single partition. The partitioning can be controlled by a user-defined partitioning function, but normally the default partitioner—which buckets keys using a hash function—works very well.
HDFS is a filesystem designed for storing very large files with streaming data access patterns(write-once, read-many-times pattern), running on clusters of commodity hardware.
HDFS blocks(>64M) are large compared to disk blocks, and the reason is to minimize the cost of seeks. Map tasks in MapReduce normally operate on one block at a time, so if you have too few tasks (fewer than nodes in the cluster), your jobs will run slower than they could otherwise.
An HDFS cluster has two types of node operating in a master-worker pattern: a namenode (the master) and a number of datanodes (workers). The namenode manages the filesystem namespace. It maintains the filesystem tree and the metadata for all the files and directories in the tree. Datanodes are the workhorses of the filesystem. They store a...
One important aspect of this design is that the client contacts datanodes directly to retrieve data and is guided by the namenode to the best datanode for each block. This design allows HDFS to scale to a large number of concurrent clients, since the data traffic is spread across all the datanodes in the cluster.
Hadoop takes a simple approach in which the network is represented as a tree and the distance between two nodes is the sum of their distances to their closest common ancestor.
其它内容:
编辑推荐
《更快速网站(影印版)》是由东南大学出版社出版的。
媒体评论
“本书拥有近*的专业知识,能使你的网站飞速运行。我喜欢这本书的编排,有许多主题,每一个都被该领域受人尊敬的权威人士所探究。我的团队中的每个人都将拥有一本。”
——Bill Scott,Netflix公司UI上程总监
网站评分
书籍多样性:6分
书籍信息完全性:5分
网站更新速度:8分
使用便利性:3分
书籍清晰度:3分
书籍格式兼容性:7分
是否包含广告:8分
加载速度:5分
安全性:7分
稳定性:3分
搜索功能:5分
下载便捷性:7分
下载点评
- 格式多(428+)
- 推荐购买(337+)
- 一般般(109+)
- 无多页(77+)
- 已买(83+)
- 差评少(505+)
- 速度慢(657+)
- 中评多(604+)
- 方便(208+)
- 无缺页(96+)
下载评价
- 网友 冷***洁: ( 2025-01-06 08:42:17 )
不错,用着很方便
- 网友 益***琴: ( 2025-01-14 04:43:16 )
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
- 网友 邱***洋: ( 2025-01-12 04:53:15 )
不错,支持的格式很多
- 网友 游***钰: ( 2024-12-30 16:16:25 )
用了才知道好用,推荐!太好用了
- 网友 詹***萍: ( 2025-01-12 13:45:15 )
好评的,这是自己一直选择的下载书的网站
- 网友 石***烟: ( 2024-12-26 02:04:06 )
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 权***波: ( 2025-01-07 20:16:40 )
收费就是好,还可以多种搜索,实在不行直接留言,24小时没发到你邮箱自动退款的!
- 网友 国***舒: ( 2025-01-16 00:46:35 )
中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到
- 网友 林***艳: ( 2025-01-15 00:37:40 )
很好,能找到很多平常找不到的书。
- 网友 石***致: ( 2024-12-27 14:15:47 )
挺实用的,给个赞!希望越来越好,一直支持。
- 网友 戈***玉: ( 2025-01-18 06:45:04 )
特别棒
- 网友 郗***兰: ( 2025-01-03 21:13:39 )
网站体验不错
- 网友 寿***芳: ( 2025-01-03 19:23:01 )
可以在线转化哦
- 物流仓储作业管理(高等职业教育“十三五”规划教材) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 西藏,改变一生的旅行 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 杨绛文集 小说卷 短篇小说洗澡 【正版图书】 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 2021新版-天津市地图(盒装折叠)-中国分省系列地图 尺寸:0.749米*1.068米 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 《中外书摘》小说精品 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 中国分省自驾游地图册系列·山东自驾游地图册 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 【按需印刷】-超越集群——中国产业集群的理论探索 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 汤头歌诀 悠扬 著 北京联合出版公司【无忧售后 放心购买】 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 四大名著无障碍阅读 正版全套16册大字本绣像注释版 四大名着红楼梦西游记三国演义水浒传 专家注音释疑 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 第39天 中国华侨出版社 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
书籍真实打分
故事情节:9分
人物塑造:9分
主题深度:3分
文字风格:3分
语言运用:8分
文笔流畅:6分
思想传递:9分
知识深度:5分
知识广度:3分
实用性:3分
章节划分:6分
结构布局:9分
新颖与独特:6分
情感共鸣:4分
引人入胜:9分
现实相关:7分
沉浸感:7分
事实准确性:3分
文化贡献:9分