信息时代的计算机科学理论 上海交通大学出版社 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线

信息时代的计算机科学理论 上海交通大学出版社精美图片
》信息时代的计算机科学理论 上海交通大学出版社电子书籍版权问题 请点击这里查看《

信息时代的计算机科学理论 上海交通大学出版社书籍详细信息

  • ISBN:9787313096098
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2013-05
  • 页数:暂无页数
  • 价格:23.80
  • 纸张:胶版纸
  • 装帧:平装-胶订
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看
  • 更新时间:2025-01-19 17:32:57

寄语:

新华书店正版,关注店铺成为会员可享店铺专属优惠,团购客户请咨询在线客服!


内容简介:

《信息时代的计算机科学理论(英文版)》是交大致远教材系列之一,由约翰?霍普罗夫特编著。

《信息时代的计算机科学理论(英文版)》简介:

ComputerScienceTheoryfortheInformationAgecoversthecomputersciencetheorylikelytobeusefulinthenext40years,includinghigh-dimensionalspace,randomgraphs,singularvaluedecomposition.randomwalks,Markovchains,learningalgorithms,VC-dimension,algorithmsformassivedateproblems,clustering.Thebookalsocoversgraphicalmodelsandbeliefpropagation,rankingandvoting,sparsevectors,andcompressedsensing.

Thebookisintendedforeitheranundergraduateoragraduatetheorycourseincomputerscience.

Prof.JohnHopcroftisaworld-renownedscientistandanexpertoneducationincomputerscience.HewasawardedtheA.M.TuringAwardin1986forhiscontributionsintheoreticalcomputinganddatastructuredesign.Dr.RavindranKannanisaprincipalresearcherwithMicrosoftResearchLabslocatedinIndia.


书籍目录:

1 Introduction

2 High-Dimensional Space

2.1 Properties of High-Dimensional Space

2.2 The High-Dimensional Sphere

2.2.1 The Sphere and the Cube in Higher Dimensions

2.2.2 Volume and Surface Area of the Unit Sphere

2.2.3 The Volume is Near the Equator

2.2.4 The Volume is in a Narrow Annulus

2.2.5 The Surface Area is Near the Equator

2.3 Volumes of Other Solids

2.4 Generating Points Uniformly at Random on the Surface of a Sphere

2.5 Gaussians in High Dimension

2.6 Bounds on Tail Probability

2.7 Random Projection and the Johnson-Lindenstrauss Theorem

2.8 Bibliographic Notes

2.9 Exercises

3 Random Graphs

3.1 TheG(n, p) Model

3.1.1 Degree Distribution

3.1.2 Existence of Triangles in G ( n, d

)

3.2 Phase Transitions

3.3 The Giant Component

3.4 Branching Processes

3.5 Cycles and Full Connectivity

3.5.1 Emergence of Cycles

3.5.2 Full Connectivity

3.5.3 Threshold for O (Inn) Diameter

3.6 Phase Transitions for Monotone Properties

3.7 Phase Transitions for CNF-sat

3.8 Nonuniform and Growth Models of Random Graphs

3.8.1 Nonuniform Models

3.8.2 Giant Component in Random Graphs with Given Degree Distribution ...

3.9 Growth Models

3.9.1 Growth Model Without Preferential Attachment

3.9.2 A Growth Model with Preferential Attachment

3.10 Small World Graphs

3.11 Bibliographic Notes

3.12 Exercises

4 Singular Value Decomposition (SVD)

4.1 Singular Vectors

4.2 Singular Value Decomposition (SVD)

4.3 Best Rank k Approximations

4.4 Power Method for Computing the Singular Value Decomposition

4.5 Applications of Singular Value Decomposition

4.5.1 Principal Component Analysis

4.5.2 Clustering a Mixture of Spherical Gaussians

4.5.3 An Application of SVD to a Discrete Optimization Problem

4.5.4 Spectral Decomposition

4.5.5 Singular Vectors and Ranking Documents

4.6 Bibliographic Notes

4.7 Exercises

5 Random Walks and Markov Chains

5.1 Stationary Distribution

5.2 Electrical Networks and Random Walks

5.3 Random Walks on Undirected Graphs with Unit Edge Weights

5.4 Random Walks in Euclidean Space

5.5 The Web as a Markov Chain

5.6 Markov Chain Monte Carlo

5.6.1 Metropolis-Hasting Algorithm

5.6.2 Gibbs Sampling

5.7 Convergence of Random Walks on Undirected Graphs

5.7.1 Using Normalized Conductance to Prove Convergence

5.8 Bibliographic Notes

5.9 Exercises

6 Learning and VC-Dimension

6.1 Learning

6.2 Linear Separators, the Perceptron Algorithm, and Margins

6.3 Nonlinear Separators, Support Vector Machines, and Kernels

6.4 Strong and Weak Learning-Boosting

6.5 Number of Examples Needed for Prediction: VC-Dimension

6.6 Vapnik-Chervonenkis or VC-Dimension

6.6.1 Examples of Set Systems and Their VC-Dimension

6.6.2 The Shatter Function

6.6.3 Shatter Function for Set Systems of Bounded VC-Dimension

6.6.4 Intersection Systems

6.7 The VC Theorem

6.8 Bibliographic Notes

6.9 Exercises

7 Algorithms for Massive Data Problems

7.1 Frequency Moments of Data Streams

7.1.1 Number of Distinct Elements in a Data Stream

7.1.2 Counting the Number of Occurrences of a Given Element

7.1.3 Counting Frequent Elements

7.1.4 The Second Moment

7.2 Sketch of a Large Matrix

7.2.1 Matrix Multiplication Using Sampling

7.2.2 Approximating a Matrix with a Sample of Rows and Columns ...

7.3 Sketches of Documents

7.4 Exercises

8 Clustering

8.1 Some Clustering Examples

8.2 A Simple Greedy Algorithm for k-clustering

8.3 Lloyd's Algorithm for k-means Clustering

8.4 Meaningful Clustering via Singular Value Decomposition

8.5 Recursive Clustering Based on Sparse Cuts

8.6 Kernel Methods

8.7 Agglomerative Clustering

8.8 Communities, Dense Submatrices

8.9 Flow Methods

8.10 Linear Programming Formulation

8.11 Finding a Local Cluster Without Examining the Whole Graph

8.12 Axioms for Clustering

8.12.1 An Impossibility Result

8.12.2 A Satisfiable Set of Axioms

8.13 Exercises

9 Graphical Models and Belief Propagation

9.1 Bayesian or Belief Networks

9.2 Markov Random Fields

9.3 Factor Graphs

9.4 Tree Algorithms

9.5 Message Passing Algorithm

9.6 Graphs with a Single Cycle

9.7 Belief Update in Networks with a Single Loop

9.8 Maximum Weight Matching

9.9 Warning Propagation

9.10 Correlation Between Variables

9.11 Exercises

10 Other Topics

10.1 Rankings

10.2 Hare System for Voting

10.3 Compressed Sensing and Sparse Vectors

10.3.1 Unique Reconstruction of a Sparse Vector

10.3.2 The Exact Reconstruction Property

10.3.3 Restricted Isometry Property

10.4 Applications

10.4.1 Sparse Vector in Some Coordinate Basis

10.4.2 A Representation Cannot be Sparse in Both Time and Frequency Domains

10.4.3 Biological

10.4.4 Finding Overlapping Cliques or Communities

10.4.5 Low Rank Matrices

10.5 Exercises

11 Appendix

11.1 Asymptotic Notation

11.2 Useful Inequalities

11.3 Sums of Series

11.4 Probability

11.4.1 Sample Space, Events, Independence

11.4.2 Variance

11.4.3 Variance of Sum of Independent Random Variables

11.4.4 Covariance

11.4.5 The Central Limit Theorem

11.4.6 Median

11.4.7 Unbiased Estimators

11.4.8 Probability Distributions

11.4.9 Maximum Likelihood Estimation MLE

11.4.10 Tail Bounds

11.4.11 Chernoff Bounds: Bounding of Large Deviations

11.4.12 Hoeffding's Inequality

11.5 Generating Functions

11.5.1 Generating Functions for Sequences Defined by Recurrence Relationships

11.5.2 Exponential Generating Function

11.6 Eigenvalues and Eigenvectors

11.6.1 Eigenvalues and Eigenvectors

11.6.2 Symmetric Matrices

11.6.3 Extremal Properties of Eigenvalues

11.6.4 Eigenvalues of the Sum of Two Symmetric Matrices

11.6.5 Norms

11.6.6 Important Norms and Their Properties

11.6.7 Linear Algebra

11.6.8 Distance Between Subspaces

11.7 Miscellaneous

11.7.1 Variational Methods

11.7.2 Hash Functions

11.7.3 Catalan Numbers

11.7.4 Sperner's Lemma

11.8 Exercises

Index

References


作者介绍:

暂无相关内容,正在全力查找中


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

暂无其它内容!


书籍真实打分

  • 故事情节:7分

  • 人物塑造:5分

  • 主题深度:7分

  • 文字风格:7分

  • 语言运用:7分

  • 文笔流畅:7分

  • 思想传递:6分

  • 知识深度:6分

  • 知识广度:4分

  • 实用性:6分

  • 章节划分:8分

  • 结构布局:5分

  • 新颖与独特:8分

  • 情感共鸣:5分

  • 引人入胜:7分

  • 现实相关:9分

  • 沉浸感:5分

  • 事实准确性:9分

  • 文化贡献:5分


网站评分

  • 书籍多样性:3分

  • 书籍信息完全性:7分

  • 网站更新速度:8分

  • 使用便利性:5分

  • 书籍清晰度:7分

  • 书籍格式兼容性:5分

  • 是否包含广告:8分

  • 加载速度:4分

  • 安全性:5分

  • 稳定性:5分

  • 搜索功能:6分

  • 下载便捷性:4分


下载点评

  • 体验差(275+)
  • 品质不错(536+)
  • 在线转格式(346+)
  • 已买(195+)
  • 不亏(251+)
  • 目录完整(275+)
  • 方便(358+)
  • 无漏页(198+)

下载评价

  • 网友 晏***媛: ( 2024-12-21 22:05:27 )

    够人性化!

  • 网友 敖***菡: ( 2025-01-08 08:30:42 )

    是个好网站,很便捷

  • 网友 宓***莉: ( 2025-01-11 19:47:13 )

    不仅速度快,而且内容无盗版痕迹。

  • 网友 詹***萍: ( 2025-01-17 05:45:02 )

    好评的,这是自己一直选择的下载书的网站

  • 网友 养***秋: ( 2025-01-11 05:15:39 )

    我是新来的考古学家

  • 网友 宫***玉: ( 2024-12-28 02:47:17 )

    我说完了。

  • 网友 林***艳: ( 2025-01-11 06:58:39 )

    很好,能找到很多平常找不到的书。

  • 网友 师***怀: ( 2025-01-07 20:09:53 )

    好是好,要是能免费下就好了

  • 网友 索***宸: ( 2025-01-19 06:27:22 )

    书的质量很好。资源多

  • 网友 利***巧: ( 2024-12-26 03:09:58 )

    差评。这个是收费的

  • 网友 居***南: ( 2025-01-01 23:55:35 )

    请问,能在线转换格式吗?

  • 网友 薛***玉: ( 2025-01-03 00:15:30 )

    就是我想要的!!!

  • 网友 陈***秋: ( 2024-12-30 19:58:53 )

    不错,图文清晰,无错版,可以入手。

  • 网友 权***颜: ( 2024-12-29 18:43:06 )

    下载地址、格式选择、下载方式都还挺多的


随机推荐